報(bào)告題目:Difference ``abc" theorem for entire functions and Difference analogue of truncated version of Nevanlinna second main theorem
報(bào)告人:溫智濤教授
報(bào)告時(shí)間:2024年11月8日 15:00-16:00
主持人:李葉舟教授
地點(diǎn):騰訊會(huì)議 632-109-779
報(bào)告摘要:
In this paper, we focus on the difference analogue of the Stothers-Mason theorem for entire functions of order less than 1, which can be seen as difference $abc$ theorem for entire functions. We also obtain the difference analogue of truncated version of Nevanlinna second main theorem which reveals that a subnormal meromorphic function $f(z)$ such that $\Delta f(z)\not\equiv 0$ cannot have too many points with long height in the complex plane. Both theorems depend on new definitions of height of shifting poles and shifting zeros of a given meromorphic function in a domain.
報(bào)告人介紹:報(bào)告人溫智濤,汕頭大學(xué)數(shù)學(xué)系教授,博士生導(dǎo)師。2013年博士畢業(yè)于東芬蘭大學(xué),研究方向?yàn)閺?fù)分析。先后在香港城市大學(xué)做博士后,在太原理工大學(xué),汕頭大學(xué)任教。現(xiàn)階段主要研究復(fù)平面上的差分Painleve方程,以及指數(shù)多項(xiàng)式的零點(diǎn)分布問(wèn)題。主要結(jié)果接受發(fā)表于Trans. Amer. Math. Soc.,Israel J. Math. , J. Differential Equ., Bull. Lond. Math. Soc. ,Journal d’Analyse Mathématique等國(guó)際期刊。主持國(guó)家自然科學(xué)基金青年項(xiàng)目1項(xiàng),面上項(xiàng)目2項(xiàng)。