報告題目:Some rigidity results for holomorphic and meromorphic functions on complete Kahler connected sums with non-parabolic ends
報告人:董顯晶教授
報告時間:2024年10月30日15:00-16:00
主持人:劉志學(xué)
地點:騰訊會議613-726-441
報告摘要:Motivated by invalidness of Liouville property for harmonic functions on the connected sum of several copies of complex Euclidean spaces, we explore the Nevanlinna theory on complete Kahler connected sums with non-parabolic ends. As a consequence, we prove some rigidity results such as Liouville’s theorem and Picard’s theorem for holomorphic and meromorphic functions on such Kahler connected sums.
報告人介紹:博士畢業(yè)于南京大學(xué)數(shù)學(xué)系,研究方向為多復(fù)變與復(fù)幾何,特別是復(fù)流形上的值分布理論、L2理論;目前在J. Inst. Math. Jussieu,Pacific J. Math.,Asian J. Math.,Science China Math. 等國內(nèi)外期刊上發(fā)表了多篇學(xué)術(shù)論文。